国产乱子轮xxx农村-欧美日本特级婬片视频-蜜桃成人免费视频-日本午夜在线-成人手机视频-特级西西444www-亚洲激情一区二区三区-尤物最新网址-久久久69-538国产精品一区二区-不卡av网站在线观看-久久夜色精品-中文字幕精品在线观看-亚洲国产传媒99综合-午夜国产视频-黄色免费片-日本在线一级

 
武漢大學羅玉峰研究團隊發(fā)表智慧灌溉決策最新研究成果
來源: | 作者: 農(nóng)業(yè)信息化 | 發(fā)布時間: 2024-05-13 | 1278 次瀏覽 | 分享到:

論文的題目是《基于天氣預報的水稻灌溉決策強化學習方法》。

A reinforcement learning approach to irrigation decision-making for rice using weather forecasts

Mengting Chen, Yufeng Luo




文章介紹了在智能灌溉決策方面的最新進展。歡迎下載引用詳見:https://www.sciencedirect.com/science/article/pii/S0378377421001037

文章發(fā)表在科學導報ScienceDirect 上:https://doi.org/10.1016/j.agwat.2021.106838


文章要點

提出并驗證了灌溉決策的一種強化學習方法。

通過明智的學習方法解決利用灌溉經(jīng)驗和天氣預報的不確定性的問題。

該方法能在不損失產(chǎn)量的前提下節(jié)約灌溉水量,縮短灌溉時間。

所提出的灌溉強化學習方法對于智能灌溉實踐具有很好的應用前景。


論文摘要

充分利用降雨提高農(nóng)業(yè)用水效率是農(nóng)業(yè)節(jié)水的有效途徑之一。當前,天氣預報可以用于潛在地節(jié)約灌溉用水,但應避免不必要灌溉的風險和由于天氣預報的不確定性造成的,可能存在的產(chǎn)量損失。為此,提出了一種基于短期天氣預報的深度Q學習灌溉決策策略。以南昌地區(qū)水稻為例,驗證了該方法的實用性。收集了南昌附近臺站2012-2019年水稻生育期的短期天氣預報和觀測氣象資料。比較了常規(guī)灌溉和DQN灌溉兩種灌溉決策策略,并對其節(jié)水效果進行了評價。結(jié)果表明,該模型的日降水預報性能良好,具有潛在的學習和開發(fā)空間。DQN灌溉策略訓練后具有較強的泛化能力,可用于利用天氣預報進行灌溉決策。在我們的案例中,模擬結(jié)果表明,與傳統(tǒng)灌溉決策相比,DQN灌溉產(chǎn)生必要的節(jié)水優(yōu)勢,灌溉節(jié)水23mm,排水量平均減少21mm,灌溉時間平均減少1.0倍,產(chǎn)量沒有明顯下降。DQN灌溉策略借鑒了過去的灌溉經(jīng)驗和天氣預報的不確定性,避免了天氣預報不完善的風險。


Highlights


  • A reinforcement learning approach for irrigation decision-making is proposed and tested.

  • Past irrigation experiences and uncertainties of weather forecasts are intelligently learned.

  • The proposed method can conserve irrigation water and reduce irrigation time without yield loss.

  • The proposed reinforcement learning approach for irrigation is promising for smart irrigation practices.


Abstract

Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.


文章來源:http://irripro.com.cn/


综艺| 科技| 中西区| 贵港市| 科尔| 泸西县| 长武县| 东乡县| 淮阳县| 改则县| 土默特右旗| 桃园市| 宁津县| 苏尼特右旗| 绩溪县| 汝阳县| 娄烦县| 崇仁县| 西乌珠穆沁旗| 海原县| 永兴县| 黄大仙区| 古浪县| 藁城市| 浙江省| 漯河市| 威远县| 马关县| 定州市| 育儿| 图木舒克市| 金塔县| 霍林郭勒市| 台东市| 宁化县| 册亨县| 汉沽区| 都昌县| 永川市| 卓尼县| 庆元县|